PAPER - I : MODEL PAPER - 06

(BASED ON MARCH 2018) MATHEMATICS & STATISTICS COMMERCE

TIME : 1 HR 30 MIN

Q1. (A) Attempt any six of the following

- 01. Draw Venn Diagram for the truth of the following statementsa) All rational numbers are real numbers
 - **Q** = set of all rational numbers
 - **R** = set of all real numbers
 - **U** = set of all numbers (complex)

b) Some rectangles are squares

- **R** = set of all rectangles
- **S** = set of all squares
- **U** = set of all quadrilaterals

SOLUTION

$ A = 15 - 8 = 7 \neq 0$ Hence A^{-1} exist	$ \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} A^{-1} = \begin{pmatrix} 1 & -1 \\ -\frac{2}{7} & \frac{3}{7} \end{pmatrix} $
$AA^{-1} = I$	
$ \begin{bmatrix} 3 & 4 \\ 2 & 5 \end{bmatrix} A^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} $	$ \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} A^{-1} = \frac{1}{7} \begin{pmatrix} 7 & -7 \\ -2 & 3 \end{pmatrix} $
$R_1 - R_2$	$R_1 + R_2$
$ \begin{bmatrix} 1 & -1 \\ 2 & 5 \end{bmatrix} A^{-1} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} $	$ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} A^{-1} = \frac{1}{7} \begin{pmatrix} 5 & -4 \\ -2 & 3 \end{pmatrix} $
$R_2 - 2 R_1$	
$ \begin{pmatrix} 1 & -1 \\ 0 & 7 \end{pmatrix} A^{-1} = \begin{pmatrix} 1 & -1 \\ -2 & 3 \end{pmatrix} $	$\begin{bmatrix} 1 & -\frac{1}{7} \\ -2 & 3 \end{bmatrix}$
R ₂ /7	$A^{-1} = \frac{1}{7} \begin{pmatrix} 5 & -4 \\ -2 & 3 \end{pmatrix}$

MARKS : 40

(12)

03.
$$f(x) = \frac{5^{x} - 3^{x}}{2^{x} - 1}$$
; $x \neq 0$
= $\log(5/3) / \log 2$; $x = 0$
Discuss continuity at $x = 0$

STEP 1

 $\lim_{x \to 0} f(x)$

- $= \lim_{x \to 0} \frac{5^{x} 3^{x}}{2^{x} 1}$ $= \lim_{x \to 0} \frac{5^{x} 1 3^{x} + 1}{2^{x} 1}$
- = Lim $x \to 0$ $(5^{x} - 1) - (3^{x} - 1)$ $2^{x} - 1$
- Divide Numerator & Denominator by x , $x \rightarrow 0$, $x \neq 0$

		$(5^{\times} - 1) - (3^{\times} - 1)$
=	Lim	X
	$x \rightarrow 0$	$2^{X} - 1$
		×
		5 ^x - 1 - 3 ^x - 1
=	Lim	X X
	$x \rightarrow 0$	$2^{X} - 1$
		X
_		
-		
		109 2

 $= \frac{\log(5/3)}{\log 2}$

STEP 2:

f(0) = log(5/3) / log2...... given

STEP 3:

f(0)	=	Lim f(x)	
		x→0	
∴ f	is	continuous at x = 0	

- 04. Find dy/dx if $y = \cos^{-1} \sqrt{x}$ SOLUTION $y = \cos^{-1} \sqrt{x}$ $\frac{dy}{dx} = \frac{1}{\sqrt{1-x}} \frac{d}{dx} \sqrt{x}$ $\frac{dy}{dx} = \frac{1}{\sqrt{1-x}} \frac{1}{2\sqrt{x}}$ $= \frac{1}{2\sqrt{x(1-x)}}$
- 05. find values of x for which

$$f(x) = x + 9/x$$
 is decreasing

SOLUTION

For f(x) decreasing , f'(x) < 0 $1 - \frac{9}{x^2} < 0$ $\frac{x^2 - 9}{x^2} < 0$ $x^2 - 9 < 0$ $(x - 3) \cdot (x + 3) < 0$

CASE 1:

x - 3 > 0 & x + 3 < 0

NOT POSSIBLE SO DISCARD

CASE 2:

f is decreasing for $x \in (-3, 3)$, $x \neq 0$

06.

$$\int \frac{x+1}{x.(x+\log x)} dx$$

SOLUTION

- PUT
- $x + \log x = t$

$$1 + \frac{1}{x} \cdot dx = dt$$

$$\frac{x+1}{x} \cdot dx = dt$$

NOW THE SUM IS

$$= \int \frac{1}{t} dt$$

- = log | t | + c
- = log | x + log x | + c

 $\mathbf{07.A} = \begin{pmatrix} -1 & 2 \\ -3 & 4 \end{pmatrix}$

- SOLUTION
- COFACTORS $A_{11} = (-1)^{1+1}(4) = 4$ $A_{12} = (-1)^{1+2}(-3) = 3$ $A_{21} = (-1)^{2+1}(2) = -2$ $A_{22} = (-1)^{2+2}(-1) = -1$

$$\begin{array}{c} \textbf{08.} \quad \int \frac{1}{\sqrt{2x-x^2}} \quad dx \end{array}$$

$$= \int \frac{1}{\sqrt{0 - (x^2 - 2x)}} dx$$

$$= \int \frac{1}{\sqrt{0 - (x^2 - 2x + 1) + 1}} dx$$

$$\int \frac{1}{\sqrt{1-(x-1)^2}} dx$$

$$\int \frac{1}{\sqrt{1^{2} - (x - 1)^{2}}} dt$$

= $\sin^{-1}(x - 1) + c$

Q2.

(A) Attempt any TWO of the following (06)

01.
$$f(x) = \frac{x^2}{5^x + 5^{-x} - 2}$$
; $x \neq 0$.

Find f(0) if f(x) is CONTINOUS at x = 0

SOLUTION				
ѕт	EP 1			
Lin x→	∩f(x) ▶ 0			
=	Lim	x ²		
	x→ 0	$5^{x} + 5^{-x} - 2$		
=	Lim	x ²		
	x→ 0	$\frac{5^{x} + 1 - 2}{5^{x}}$		
=	Lim	x ²		
	x→ 0	$(5^{x})^{2} + 1 - 2.5^{x}$		
=	$\lim_{x \to 0}$			
=	Lim	5×		
	x→ 0	$\frac{(5^{x}-1)^{2}}{x^{2}}$		
=	Lim	5 [×]		
	$x \rightarrow 0$	$\frac{5^{x}-1}{x}^{2}$		
=	_(50 log 5) ²		
=	(1 log 5) ²		

STEP 2

Since f is continuous at x = 0

$$f(0) = \lim_{x \to 0} f(x) = \frac{1}{(\log 5)^2}$$

02. Write the converse , inverse and the contra-positive of the statement

"if two triangles are not congruent then their areas are not equal"

$P \rightarrow Q$

if two triangles are not congruent then their areas are not equal

- CONVERSE
- $Q \rightarrow P$

if areas are not equal then two triangles are not congruent

CONTRAPOSITIVE

~Q→~P

if areas are equal then two triangles are congruent

INVERSE

~P→~Q

if two triangles are congruent then their areas are equal

03. if $x = \cos^2 \theta$ and $y = \cot \theta$ then find dy/dxat $\theta = \pi/4$

STEP 1

 $x = \cos^2 \theta$

 $\therefore \quad \frac{dx}{d\theta} = 2\cos\theta \quad \frac{d}{d\theta}\cos\theta$

= $-2\cos\theta\sin\theta$

dx	=	$-2\cos^{\pi}$	/4 sin	^π /4		
$d\theta \ \theta = \pi/4$						
	=	$-2\frac{1}{\sqrt{2}}x$	$\frac{1}{\sqrt{2}}$	=	- '	1
STEP 2						
$y = \cot \theta$						
dy = -cos	ec	2 ₀				

 $\frac{dy}{dt} = -\csc^2 \pi/4 = -2$

$$d\theta \theta = \pi/4$$

STEP 3

dθ

 $\frac{dy}{dx}\theta = \frac{\pi}{4} \quad \frac{dy/d\theta}{dx/d\theta} \quad \theta = \frac{\pi}{4}$

(B) Attempt any TWO of the following (08)

01. The sum of three numbers is 6. If we multiply the third number by 3 and add it to the second number we get 11. By adding first and third numbers we get a number which is double than the second number. Use these information & find a system of linear equations. Find these three numbers using MATRICES

SOLUTION

Let three numbers be x , y & z
As per the given condition
x + y + z = 6 (1)
y + 3z = 11 (2)
x + z = 2y
x - 2y + z = 0 (3)
AX = B
$ \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 1 & -2 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 6 \\ 11 \\ 0 \end{pmatrix} $
$R_3 - R_1$
$ \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 0 & -3 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 6 \\ 11 \\ -6 \end{pmatrix} $
$\begin{pmatrix} x + y + z \\ y + 3z \\ -3y \end{pmatrix} = \begin{pmatrix} 6 \\ 11 \\ -6 \end{pmatrix}$
BY EQUALITY OF TWO MATRICES $-3y = -3$ $\therefore y = 2$
y + 3z = 11 subs y = 2 $\therefore z = 3$
x + y + z = 6 subs $y = 2 \& z = 3 \therefore x = 1$

Hence the three numbers are 1 , 2 & 3

02.

Find the area of the region bounded by the curve $x^2 = 16y$ and the lines y = 1; y = 4SOLUTION

$$= \frac{16}{3}(8-1)$$

$$= \frac{112}{3} \text{ sq. units}$$

03.

Divide 16 into two parts such that sum of their squares is minimum

SOLUTION

Let one part be x and other part be 16 - x

STEP 1

 $f(x) = x^{2} + (16 - x)^{2}$ = x² + 256 - 32x + x² = 2x² - 32x + 256

STEP 2

f'(x) = 4x - 32f''(x) = 4

STEP 3

f'(x) = 0 $4x - 32 = 0 \therefore x = 8$

STEP 4

f''(x) x = 8 = 4 > 0f(x) is minimum at x = 8

Hence divide 16 into 8,8

Q3. (A) Attempt any TWO of the following

01.
$$f(x) = \frac{x^3 - 64}{\sqrt{x^2 + 9} - 5}$$
; $x \neq 4$
= 10; $x = 4$

Discuss continuity at x = 4

SOLUTION

STEP 1

 $\begin{array}{ll} \text{Lim} & f(x) \\ x \rightarrow 4 \end{array}$

$$= \lim_{x \to 4} \frac{x^3 - 64}{\sqrt{x^2 + 9} - 5}$$

$$= \lim_{x \to 4} \frac{x^3 - 64}{\sqrt{x^2 + 9} - 5} \sqrt{\frac{x^2 + 9}{x^2 + 9} + 5} = \lim_{x \to 4} \frac{x^3 - 43}{x^2 + 9 - 25} \frac{\sqrt{x^2 + 9} + 5}{1} = \lim_{x \to 4} \frac{(x^3 - 4^3)}{x^2 - 16} \frac{\sqrt{x^2 + 9} + 5}{1} = \lim_{x \to 4} \frac{(x - 4)(x^2 + 4x + 16)}{(x - 4)(x + 4)} \sqrt{\frac{x^2 + 9}{1} + 5} = \lim_{x \to 4} \frac{(x^2 + 4x + 16)}{(x + 4)} \frac{\sqrt{x^2 + 9} + 5}{1} = \frac{(4^2 + 4x + 16)}{(4 + 4)} \frac{\sqrt{4^2 + 9} + 5}{1} = \frac{(48)}{(4 + 4)} \frac{\sqrt{4^2 + 9} + 5}{1} = \frac{(48)}{8} \frac{5 + 5}{1} = (6) (10) = 60$$
STEP 2

f(4) = 10 given

STEP 3

 $f(4) \neq \lim_{x \to 4} f(x) ; f \text{ is discontinuous at } x = 4$

STEP 4

Removable Discontinuity

f co rede	an be made continuous at x = 4 by efining it as $f(x) = \frac{x^3 - 64}{\sqrt{x^2 + 9} - 5} ; x \neq 4$ $= 240 ; x = 4$
02.	x = $2t$; y = $1-t^2$ 1+t ² ; y = $1-t^2$
	Show that $\frac{dy}{dx} = \frac{-x}{y}$
SOLI	JTION
✓	$x = \frac{2t}{1+t^2}$ Put t = tan θ
	$x = \frac{2\tan\theta}{1 + \tan^2\theta}$
	$x = \sin 2\theta \qquad (1)$
	$\frac{dx}{d\theta} = \cos 2\theta \frac{d}{d\theta} 2\theta$
	$= 2\cos 2\theta$
✓	$y = \frac{1 - t^2}{1 + t^2}$ Put t = tan θ
	$y = \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta}$
	$y = \cos 2\theta$ (2)
	$\frac{dy}{d\theta} = -\sin 2\theta \frac{d}{d\theta} 2\theta$
	$= -2\sin 2\theta$
✓	$\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta}$
	$= -\frac{2\sin 2\theta}{2\cos 2\theta}$
	$= - \frac{\sin 2\theta}{\cos 2\theta}$
	= - <u>x</u> y From 1 & 2

03. Using truth table show that

\sim (p \rightarrow \sim q) = p \land q

SOLUTION

COLA COI				COLB	
р	q	~q	$p \rightarrow \sim q$	~ (p \rightarrow ~q)	p∧q
Т	Т	F	F	Т	T
Т	F	Т	Т	F	F
F	т	F	Т	F	F
F	F	Т	Т	F	F

Since truth values in col A and col B are identical, ~ $(p \rightarrow ~q) \equiv p \land q$

(B) Attempt any TWO of the following (08)

01. Evaluate :
$$\int \frac{\sin x}{\sqrt{\cos^2 x - 2\cos x - 3}} dx$$

SOLUTION

$$= \int \frac{-1}{\sqrt{t^2 - 2t - 3}} dt$$

$$= \int \frac{-1}{\sqrt{t^2 - 2t + 1 - 3 - 1}} dt$$

$$= \int \frac{-1}{\sqrt{(t-1)^2 - 4}} dt$$

=
$$\int \frac{-1}{\sqrt{(t-1)^2 - 2^2}} dt$$

$$= \log \left| t + \sqrt{t^2 - \alpha^2} \right| + c$$

$$= -\log \left| t - 1 + \sqrt{(t - 1)^2 - 2^2} \right| + c$$

$$= -\log \left| t - 1 + \sqrt{t^2 - 2t - 3} \right| + c$$

= $-\log \left| \cos x - 1 + \sqrt{\cos^2 x - 2\cos x - 3} \right| + c$

02.

cost of x benches is given as C = $200 + \frac{x}{5}$ and are then sold @ 15 – $^{\rm X}/_{\rm 2000}$ each . Find the number of benches to be sold to make profit maximum

SOLUTION

STEP 1

C = 200 + x, R = $px = 15x - \frac{x^2}{2000}$

$$\pi = R - C$$

= $15x - \frac{x^2}{2000} - \frac{200}{5}$

$$= 15x - \frac{x}{5} - \frac{x^2}{2000} - 200$$

$$= \frac{74x}{5} - \frac{x^2}{2000} - 200$$

STEP 2

$$d\pi = \frac{74}{5} - \frac{2x}{2000}$$

$$\frac{\mathrm{d}^2\pi}{\mathrm{d}x^2} = \frac{-2}{2000}$$

STEP 3

$$\frac{d\pi}{dx} = 0$$

$$\frac{74}{5} - \frac{2x}{2000} = 0$$

$$\frac{74}{5} = \frac{2x}{2000} = 14800$$

STEP 4

 $\underline{d^2\pi}$ = $\underline{-2}$ < 0 $dx^2 = 14800$ 2000

hence profit is maximum at x = 14800

ans : number of benches to be sold to make profit maximum = 14800 units

$$\frac{x}{(x+2)(x+3)} = \frac{-2}{x+2} + \frac{3}{x+3}$$
BACK IN THE SUM

$$= \int_{2}^{3} \left(\frac{-2}{x+2} + \frac{3}{x+3}\right) dx$$

$$= \left(-2 \log |x+2| + 3 \log |x+3|\right)_{2}^{3}$$

$$= \left(-2 \log 5 + 3 \log 6\right) - \left(-2 \log 4 + 3 \log 5\right)$$

$$= -2 \log 5 + 3 \log 6 + 2 \log 4 - 3 \log 5$$

$$= 2 \log 4 + 3 \log 6 - 5 \log 5$$

$$= \log 4^{2} + \log 6^{3} - \log 4^{5}$$

$$= \log 16 + \log 216 - \log 3125$$

$$= \log \left(\frac{16 \times 216}{3125}\right)$$

$$= \log \left(\frac{3456}{3125}\right)$$

3

2

DO NOT STOP GET READY FOR NEXT

$$\frac{x}{(x+2)(x+3)} = \frac{-2}{x+2} + \frac{3}{x+3}$$

$$\begin{array}{rcl}
-3 & = \\
3 & = \\
Put x = -2 \\
-2 & = A(-2 + 3) \\
-2 & = A(1) \\
-2 & = A
\end{array}$$

03.
$$\int_{2}^{3} \frac{x}{(x+2)(x+3)} dx$$
$$\frac{x}{(x+2)(x+3)} = \frac{A}{x+2} + \frac{B}{x+3}$$
$$x = A(x+3) + B(x+2)$$
Put x = -3
-3 = B(-3+2)
-3 = B(-1)
3 = B